Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.570
Filtrar
1.
J Mol Histol ; 55(1): 15-24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38165564

RESUMO

Intestinal epithelium is a dynamic cellular layer that lines the small-bowel and makes a relatively impenetrable barrier to macromolecules. Intestinal epithelial cell polarity is crucial in coordinating signalling pathways within cells and mainly regulated by three conserved polarity protein complexes, the Crumbs (Crb) complex, partitioning defective (PAR) complex, and Scribble (Scrib) complex. Polarity proteins regulate the proper establishment of the intercellular junctional complexes including tight junctions (TJs), adherence junctions (AJs), and desmosomes which hold epithelial cells together and play a major role in maintaining intestinal barrier integrity. Impaired intestinal epithelial cell polarity and barrier integrity result in irreversible immune responses, the host- microbial imbalance and intestinal inflammatory disorders. Disassembling the epithelial tight junction and augmented paracellular permeability is a conspicuous hallmark of celiac disease (CD) pathogenesis. There are several dietary components that can improve intestinal integrity and function. The aim of this review article is to summarize current information about the association of polarity proteins and AJC damages with pathogenesis of CD.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Mucosa Intestinal/metabolismo , Células Epiteliais/metabolismo , Intestinos , Junções Íntimas/metabolismo
2.
Sci Rep ; 13(1): 21180, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040898

RESUMO

Enzyme therapy can be an appropriate treatment option for celiac disease (CeD). Here, we developed Bromelain-Loaded Nanocomposites (BLNCs) to improve the stability and retention of bromelain enzyme activity. After the characterization of BLNCs, the cytotoxicity of BLNCs was determined on the Caco-2 cell line. The effect of BLNCs on gliadin degradation and the production of pro-inflammatory cytokines and anti-inflammatory molecules in peripheral blood mononuclear cells (PBMCs) obtained from celiac patients were assessed. Furthermore, the expression of CXCR3 and CCR5 genes was measured in CaCo-2 cells treated with gliadin, gliadin-digested with BLNCs, and bromelain. Our study demonstrated that the Bromelain entrapment efficiency in these nanoparticles was acceptable, and BLNCs have no toxic effect on cells. SDS-PAGE confirmed the digestion effect of bromelain released from nanocomposites. When Caco-2 cells were treated with gliadin digested by free bromelain and BLNCs, the expression of CXCR3 and CCR5 genes was significantly decreased. PBMCs of celiac patients treated with Bromelain and BLNCs decreased inflammatory cytokines (IL-1ß, IL-6, TNF-α, and IFN-γ) production compared to untreated PBMCs. This treatment also increased IL-10 and CTLA-4 in PBMCs of CeD patients. According to the promising results of this study, we can hope for the therapeutic potential of BLNCs for CeD.


Assuntos
Doença Celíaca , Gliadina , Humanos , Células CACO-2 , Gliadina/metabolismo , Leucócitos Mononucleares/metabolismo , Bromelaínas/farmacologia , Citocinas/metabolismo , Doença Celíaca/tratamento farmacológico , Doença Celíaca/metabolismo
3.
Biol Sex Differ ; 14(1): 86, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072919

RESUMO

BACKGROUND: Celiac disease (CeD) is an immune-mediated disorder that develops in genetically predisposed individuals upon gluten consumption. HLA risk alleles explain 40% of the genetic component of CeD, so there have been continuing efforts to uncover non-HLA loci that can explain the remaining heritability. As in most autoimmune disorders, the prevalence of CeD is significantly higher in women. Here, we investigated the possible involvement of the X chromosome on the sex bias of CeD. METHODS: We performed a X chromosome-wide association study (XWAS) and a gene-based association study in women from the CeD Immunochip (7062 cases, 5446 controls). We also constructed a database of X chromosome cis-expression quantitative trait loci (eQTLs) in monocytes from unstimulated (n = 226) and lipopolysaccharide (LPS)-stimulated (n = 130) female donors and performed a Summary-data-based MR (SMR) analysis to integrate XWAS and eQTL information. We interrogated the expression of the potentially causal gene (TMEM187) in peripheral blood mononuclear cells (PBMCs) from celiac patients at onset, on a gluten-free diet, potential celiac patients and non-celiac controls. RESULTS: The XWAS and gene-based analyses identified 13 SNPs and 25 genes, respectively, 22 of which had not been previously associated with CeD. The X chromosome cis-eQTL analysis found 18 genes with at least one cis-eQTL in naïve female monocytes and 8 genes in LPS-stimulated female monocytes, 2 of which were common to both situations and 6 were unique to LPS stimulation. SMR identified a potentially causal association of TMEM187 expression in naïve monocytes with CeD in women, regulated by CeD-associated, eQTL-SNPs rs7350355 and rs5945386. The CeD-risk alleles were correlated with lower TMEM187 expression. These results were replicated using eQTLs from LPS-stimulated monocytes. We observed higher levels of TMEM187 expression in PBMCs from female CeD patients at onset compared to female non-celiac controls, but not in male CeD individuals. CONCLUSION: Using X chromosome genotypes and gene expression data from female monocytes, SMR has identified TMEM187 as a potentially causal candidate in CeD. Further studies are needed to understand the implication of the X chromosome in the higher prevalence of CeD in women.


Celiac disease (CeD) is an immune-related condition triggered by gluten consumption in genetically susceptible individuals. Women present higher prevalence of CeD than men, but the biological explanation of such difference has not been elucidated. In this study, we investigated whether specific genetic variations on the X chromosome were associated with CeD in each sex. Surprisingly, we found 13 genetic variants and 25 genes significantly linked to CeD in women, but not in men. Additionally, we identified genetic variants on the X chromosome associated with gene expression of monocytes, a type of immune cells that is activated in CeD after gluten intake. Integrating these data with our previous findings, we found that lower expression of a gene termed TMEM187 might be associated with a potential increase in CeD risk in women. Finally, validation experiments confirmed higher TMEM187 levels in blood cells from female CeD patients compared to non-celiac women, while no such difference was seen in males. In summary, our study suggests that the X-chromosome gene TMEM187 may play a key role in CeD development, providing insights into the higher prevalence of CeD in females.


Assuntos
Doença Celíaca , Locos de Características Quantitativas , Humanos , Masculino , Feminino , Doença Celíaca/genética , Doença Celíaca/metabolismo , Monócitos/metabolismo , Leucócitos Mononucleares , Sexismo , Lipopolissacarídeos , Proteínas de Membrana/genética
4.
Trends Pharmacol Sci ; 44(12): 949-962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839914

RESUMO

Celiac disease (CeD) is a widespread, gluten-induced, autoimmune disorder that lacks any medicinal therapy. Towards the goal of developing non-dietary treatments for CeD, research has focused on elucidating its molecular and cellular etiology. A model of pathogenesis has emerged centered on interactions between three molecular families: specific class II MHC proteins on antigen-presenting cells (APCs), deamidated gluten-derived peptides, and T cell receptors (TCRs) on inflammatory CD4+ T cells. Growing evidence suggests that this pathogenic axis can be pharmacologically targeted to protect patients from some of the adverse effects of dietary gluten. Further studies have revealed the existence of additional host and environmental contributors to disease initiation and tissue damage. This review summarizes our current understanding of CeD pathogenesis and how it is being harnessed for therapeutic design and development.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/terapia , Doença Celíaca/metabolismo , Glutens/metabolismo , Linfócitos T , Receptores de Antígenos de Linfócitos T , Células Apresentadoras de Antígenos
5.
Trends Immunol ; 44(10): 745-747, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591713

RESUMO

Celiac disease (CeD) is an immune disorder characterized by gluten intolerance that can be unleashed by enteric viral infections in mice. However, Sanchez-Medina et al. recently identified a murine commensal protist, Tritrichomonas arnold, that protects against reovirus-induced intolerance to dietary protein by counteracting virus-induced epithelial stress and proinflammatory dendritic cell (DC) activation.


Assuntos
Doença Celíaca , Viroses , Animais , Camundongos , Doença Celíaca/metabolismo , Tolerância Imunológica
6.
Nutrients ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375673

RESUMO

BACKGROUND: Non-celiac wheat sensitivity (NCWS) is a poorly understood gluten-related disorder (GRD) and its prominent symptoms can be ameliorated by gluten avoidance. This study aimed to determine the effectiveness of a probiotic mixture in hydrolyzing gliadin peptides (toxic components of gluten) and suppressing gliadin-induced inflammatory responses in Caco-2 cells. METHODS: Wheat dough was fermented with a probiotic mix for 0, 2, 4, and 6 h. The effect of the probiotic mix on gliadin degradation was monitored by SDS-PAGE. The expression levels of IL-6, IL-17A, INF-γ, IL-10, and TGF-ß were evaluated using ELISA and qRT-PCR methods. RESULTS: According to our findings, fermenting wheat dough with a mix of B. longum, L. acidophilus, and L. plantarum for 6 h was effective in gliadin degradation. This process also reduced levels of IL-6 (p = 0.004), IL-17A (p = 0.004), and IFN-γ (p = 0.01) mRNA, as well as decreased IL-6 (p = 0.006) and IFN-γ (p = 0.0009) protein secretion. 4 h fermentation led to a significant decrease in IL-17A (p = 0.001) and IFN-γ (p = 0.003) mRNA, as well as reduced levels of IL-6 (p = 0.002) and IFN-γ (p < 0.0001) protein secretion. This process was also observed to increase the expression levels of IL-10 (p < 0.0001) and TGF-ß (p < 0.0001) mRNA. CONCLUSIONS: 4 h fermentation of wheat flour with the proposed probiotic mix might be a good strategy to develop an affordable gluten-free wheat dough for NCWS and probably other GRD patients.


Assuntos
Doença Celíaca , Gliadina , Humanos , Gliadina/efeitos adversos , Células CACO-2 , Hidrólise , Interleucina-10 , Interleucina-17 , Doença Celíaca/metabolismo , Interleucina-6 , Farinha , Triticum/metabolismo , Glutens/efeitos adversos , Lactobacillus acidophilus , Fator de Crescimento Transformador beta
7.
World J Gastroenterol ; 29(13): 1994-2000, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37155522

RESUMO

BACKGROUND: Celiac disease (CeD) is a multisystem immune-mediated multifactorial condition strongly associated with the intestinal microbiota. AIM: To evaluate the predictive power of the gut microbiota in the diagnosis of CeD and to search for important taxa that may help to distinguish CeD patients from controls. METHODS: Microbial DNA from bacteria, viruses, and fungi, was isolated from mucosal and fecal samples of 40 children with CeD and 39 controls. All samples were sequenced using the HiSeq platform, the data were analyzed, and abundance and diversities were assessed. For this analysis, the predictive power of the microbiota was evaluated by calculating the area under the curve (AUC) using data for the entire microbiome. The Kruskal-Wallis test was used to evaluate the significance of the difference between AUCs. The Boruta logarithm, a wrapper built around the random forest classification algorithm, was used to identify important bacterial biomarkers for CeD. RESULTS: In fecal samples, AUCs for bacterial, viral, and fungal microbiota were 52%, 58%, and 67.7% respectively, suggesting weak performance in predicting CeD. However, the combination of fecal bacteria and viruses showed a higher AUC of 81.8 %, indicating stronger predictive power in the diagnosis of CeD. In mucosal samples, AUCs for bacterial, viral, and fungal microbiota were 81.2%, 58.6%, and 35%, respectively, indicating that mucosal bacteria alone had the highest predictive power. Two bacteria, Bacteroides intestinalis and Burkholderiales bacterium 1-1-47, in fecal samples and one virus, Human_endogenous _retrovirus_K, in mucosal samples are predicted to be "important" biomarkers, differentiating celiac from nonceliac disease groups. Bacteroides intestinalis is known to degrade complex arabinoxylans and xylan which have a protective role in the intestinal mucosa. Similarly, several Burkholderiales species have been reported to produce peptidases that hydrolyze gluten peptides, with the potential to reduce the gluten content of food. Finally, a role for Human_endogenous _retrovirus_K in immune-mediated disease such as CeD has been reported. CONCLUSION: The excellent predictive power of the combination of the fecal bacterial and viral microbiota with mucosal bacteria alone indicates a potential role in the diagnosis of difficult cases of CeD. Bacteroides intestinalis and Burkholderiales bacterium 1-1-47, which were found to be deficient in CeD, have a potential protective role in the development of prophylactic modalities. Further studies on the role of the microbiota in general and Human_endogenous _retrovirus_K in particular are needed.


Assuntos
Doença Celíaca , Microbioma Gastrointestinal , Humanos , Criança , Doença Celíaca/diagnóstico , Doença Celíaca/epidemiologia , Doença Celíaca/metabolismo , Arábia Saudita/epidemiologia , Glutens , Biomarcadores/metabolismo , Bactérias/genética , Bactérias/metabolismo
8.
Biochem Genet ; 61(6): 2457-2480, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37103600

RESUMO

Immunogenicity of gliadin peptides in celiac disease (CD) is majorly determined by the pattern of molecular interactions with HLA-DQ and T-cell receptors (TCR). Investigation of the interactions between immune-dominant gliadin peptides, DQ protein, and TCR are warranted to unravel the basis of immunogenicity and variability contributed by the genetic polymorphisms. Homology modeling of HLA and TCR done using Swiss Model and iTASSER, respectively. Molecular interactions of eight common deamidated immune-dominant gliadin with HLA-DQ allotypes and specific TCR gene pairs were evaluated. Docking of the three structures was performed with ClusPro2.0 and ProDiGY was used to predict binding energies. Effects of known allelic polymorphisms and reported susceptibility SNPs were predicted on protein-protein interactions. CD susceptible allele, HLA-DQ2.5 was shown to have considerable binding affinity to 33-mer gliadin (ΔG = - 13.9; Kd = 1.5E - 10) in the presence of TRAV26/TRBV7. Higher binding affinity was predicted (ΔG = - 14.3, Kd = 8.9E - 11) when TRBV28 was replaced with TRBV20 paired with TRAV4 suggesting its role in CD predisposition. SNP rs12722069 at HLA-DQ8 that codes Arg76α forms three H-bonds with Glu12 and two H-bonds with Asn13 of DQ2 restricted gliadin in the presence of TRAV8-3/TRBV6. None of the HLA-DQ polymorphisms was found to be in linkage disequilibrium with reported CD susceptibility markers. Haplotypic presentations of rs12722069-G, rs1130392-C, rs3188043-C and rs4193-A with CD reported SNPs were observed in sub-ethnic groups. Highly polymorphic sites of HLA alleles and TCR variable regions could be utilized for better risk prediction models in CD. Therapeutic strategies by identifying inhibitors or blockers targeting specific gliadin:HLA-DQ:TCR binding sites could be investigated.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/genética , Doença Celíaca/metabolismo , Gliadina/genética , Gliadina/química , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/química , Antígenos HLA-DQ/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Polimorfismo Genético , Peptídeos/metabolismo
9.
J Cell Biochem ; 124(4): 520-532, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791261

RESUMO

Gluten intolerance is associated with several disorders in the body. Although research has grown in recent years, the understanding of its impact on different tissues and the effects of physical exercise in mitigating health problems in the condition of gluten intolerance are still limited. Therefore, our objective was to test whether gliadin would affect metabolism and inflammation in liver tissue and whether aerobic physical exercise would mitigate the negative impacts of gliadin administration in rodents. Wistar rats were divided into exercised gliadin, gliadin, and control groups. Gliadin was administered by gavage from birth to 60 days of age. The rats in the exercised gliadin group performed an aerobic running exercise training protocol for 15 days. At the end of the experiments, physiological, histological, and molecular analyzes were performed in the study. Compared to the control group, the gliadin group had impaired weight gain and increased gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. On the other hand, compared to the gliadin group, animals in the exercise-gliadin group had a recovery in body weight, improved insulin sensitivity, and a reduction in some gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. In conclusion, our results revealed that the administration of gliadin from birth impaired weight gain and induced an increase in hepatic inflammatory cytokines, which was associated with an impairment of glycemic homeostasis in the liver, all of which were attenuated by adding aerobic exercise training in the gliadin group.


Assuntos
Doença Celíaca , Gliadina , Ratos , Animais , Ratos Wistar , Doença Celíaca/metabolismo , Aumento de Peso , Inflamação/induzido quimicamente , Inflamação/terapia , Biomarcadores
10.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768957

RESUMO

Celiac disease (CD) represents a frequent autoimmune disease triggered by the ingestion of gliadin in genetically predisposed individuals. The alteration of enterocytes and brush border membrane morphology have been repetitively demonstrated, but the underlying mechanisms remain unclear. Microtubules represent a major element of the cytoskeleton and exert multiple functions depending on their tyrosination status. The aim of our study was to investigate whether posttranslational modification of microtubules was altered in the context of CD and whether this mechanism contributed to morphological changes of CD enterocytes. We examined the expression of tubulin tyrosine ligase (TTL) and vasohibin-2 (VASH2) and the level of detyrosinated and acetylated tubulin in duodenal biopsies and Caco-2 cells by immunoblot and immunofluorescence microcopy. Electron microscopy was performed to investigate the subcellular distribution of detyrosinated tubulin and brush border membrane architecture in CD biopsies and Madin-Darby Canine Kidney type II (MDCK) cells lacking TTL. CD enterocytes and Caco-2 cells stimulated with digested gliadin or IFN-y displayed a flattened cell morphology. This disturbed cellular architecture was accompanied by an increased amount of detyrosinated and acetylated tubulin and corresponding high expression of VASH2 and low expression of TTL. The altered posttranslational modification of tubulin was reversible after the introduction of the gluten-free diet. CD enterocytes and MDCK cells deficient in TTL displayed a reduced cell height along with an increased cell width and a reduced number of apical microvilli. Our results provide a functional explanation for the observed morphological alterations of the enterocytes observed in CD and provide diagnostic potential of the tyrosination status of microtubules as an early marker of villous atrophy and CD inflammation.


Assuntos
Doença Celíaca , Tubulina (Proteína) , Humanos , Animais , Cães , Tubulina (Proteína)/metabolismo , Enterócitos/metabolismo , Células CACO-2 , Doença Celíaca/metabolismo , Gliadina/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo , Proteínas Angiogênicas/metabolismo
11.
Sci Adv ; 9(4): eade5800, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696493

RESUMO

CD4+ T cells specific for cereal gluten proteins are key players in celiac disease (CeD) pathogenesis. While several CeD-relevant gluten T cell epitopes have been identified, epitopes recognized by a substantial proportion of gluten-reactive T cells remain unknown. The identification of such CeD-driving gluten epitopes is important for the food industry and in clinical settings. Here, we have combined the knowledge of a distinct phenotype of gluten-reactive T cells and key features of known gluten epitopes for the discovery of unknown epitopes. We tested 42 wheat gluten-reactive T cell clones, isolated on the basis of their distinct phenotype and with no reactivity to known epitopes, against a panel of synthetic peptides bioinformatically identified from a wheat gluten protein database. We were able to assign reactivity to 10 T cell clones and identified a 9-nucleotide oligomer core region of five previously uncharacterized gliadin/glutenin epitopes. This work represents an advance in the effort to identify CeD-driving gluten epitopes.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/metabolismo , Epitopos de Linfócito T , Glutens , Gliadina/genética , Gliadina/metabolismo , Peptídeos/metabolismo
12.
Cell Chem Biol ; 30(1): 55-68.e10, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36608691

RESUMO

Celiac disease (CeD) is an autoimmune disorder in which gluten-derived antigens trigger inflammation. Antigenic peptides must undergo site-specific deamidation to be presentable to CD4+ T cells in an HLA-DQ2 or -DQ8 restricted manner. While the biochemical basis for this post-translational modification is understood, its localization in the patient's intestine remains unknown. Here, we describe a mechanism by which gluten peptides undergo deamidation and concentration in the lysosomes of antigen-presenting cells, explaining how the concentration of gluten peptides necessary to elicit an inflammatory response in CeD patients is achieved. A ternary complex forms between a gluten peptide, transglutaminase-2 (TG2), and ubiquitous plasma protein α2-macroglobulin, and is endocytosed by LRP-1. The covalent TG2-peptide adduct undergoes endolysosomal decoupling, yielding the expected deamidated epitope. Our findings invoke a pathogenic role for dendritic cells and/or macrophages in CeD and implicate TG2 in the lysosomal clearance of unwanted self and foreign extracellular proteins.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Glutens/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Linfócitos T
13.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675008

RESUMO

Celiac disease (CD) is an inflammatory intestinal disease caused by the ingestion of gluten-containing cereals by genetically predisposed individuals. Constitutive differences between cells from CD patients and control subjects, including levels of protein phosphorylation, alterations of vesicular trafficking, and regulation of type 2 transglutaminase (TG2), have been reported. In the present work, we investigated how skin-derived fibroblasts from CD and control subjects responded to thapsigargin, an endoplasmic reticulum ER stress inducer, in an attempt to contribute to the comprehension of molecular features of the CD cellular phenotype. We analyzed Ca2+ levels by single-cell video-imaging and TG2 activity by a microplate assay. Western blots and PCR analyses were employed to monitor TG2 levels and markers of ER stress and autophagy. We found that the cytosolic and ER Ca2+ level of CD cells was lower than in control cells. Treatments with thapsigargin differently activated TG2 in control and CD cells, as well as caused slightly different responses regarding the activation of ER stress and the expression of autophagic markers. On the whole, our findings identified further molecular features of the celiac cellular phenotype and highlighted that CD cells appeared less capable of adapting to a stress condition and responding in a physiological way.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Tapsigargina/farmacologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo , Autofagia , Homeostase
14.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675276

RESUMO

Celiac disease (CD) is an immune-mediated systemic disorder elicited by the ingestion of gluten whose clinical presentation ranges from the asymptomatic form to clinical patterns characterized by multiple systemic involvement. Although CD is a disease more frequently diagnosed in patients with symptoms of malabsorption such as diarrhea, steatorrhea, weight loss, or failure to thrive, the raised rate of overweight and obesity among general pediatric and adult populations has increased the possibility to diagnose celiac disease in obese patients as well. Consequently, it is not difficult to also find obesity-related disorders in patients with CD, including "metabolic associated fatty liver disease" (MAFLD). The exact mechanisms linking these two conditions are not yet known. The going assumption is that a gluten-free diet (GFD) plays a pivotal role in determining an altered metabolic profile because of the elevated content of sugars, proteins, saturated fats, and complex carbohydrates, and the higher glycemic index of gluten-free products than gluten-contained foods, predisposing individuals to the development of insulin resistance. However, recent evidence supports the hypothesis that alterations in one of the components of the so-called "gut-liver axis" might contribute to the increased afflux of toxic substances to the liver triggering the liver fat accumulation and to the subsequent hepatocellular damage. The aim of this paper was to describe the actual knowledge about the factors implicated in the pathogenesis of hepatic steatosis in pediatric patients with CD. The presented review allows us to conclude that the serological evaluations for CD with anti-transglutaminase antibodies, should be a part of the general workup in the asymptomatic patients with "non-alcoholic fatty liver disease" (NAFLD) when metabolic risk factors are not evident, and in the patients with steatohepatitis when other causes of liver disease are excluded.


Assuntos
Doença Celíaca , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Criança , Hepatopatia Gordurosa não Alcoólica/complicações , Doença Celíaca/complicações , Doença Celíaca/diagnóstico , Doença Celíaca/metabolismo , Fatores de Risco , Glutens , Obesidade/complicações
15.
Food Funct ; 13(17): 8941-8950, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35929785

RESUMO

A lifelong gluten-free diet (GFD) is currently the only available therapy for coeliac disease (CD). However, GFD compliance is difficult and alternative strategies are envisaged in the near future. We previously found that wheat gliadin following transamidation by microbial transglutaminase (mTG) does not induce IFN-γ secretion by intestinal T cells from CD patients. Fully transamidated gliadin with lysine ethyl ester can be recovered in a soluble protein fraction (spf) generated by the enzymatic treatment of wheat flour. Herein, we analysed the performance of transamidation by mTG on a pilot-scale (1L) by evaluating the reaction kinetics and its biological effect on the intestinal immune response in HLA/DQ8 transgenic mice, a model of gluten sensitivity. At 1 h, all gliadin fractions showed a faster electrophoretic mobility by acid-polyacrylamide gel electrophoresis (A-PAGE) following transamidation in comparison with their native counterparts. In parallel, the yield of residual native gliadin dropped (30% at 180 min), confirming our previous findings on a lab scale. Mucosal sensitisation of mice with gliadin via the intranasal route induced a Th1 phenotype in mesenteric lymph nodes (MLNs). Importantly, IFN-γ secretion was significantly reduced when gliadin-specific MLN cells were challenged in vitro with spf (P < 0.001). Multiplex analysis revealed that the adaptive immune response evoked by spf involved a distinct cell population characterised by secretion of IL-2, IL-3 and IL-5. Notably, spf stimulated in vitro a reduced or null secretion of all of the examined pro-inflammatory markers mainly associated to innate immunity. In conclusion, our data revealed the ability of transamidated gliadin to modulate both innate and adaptive mechanisms involved in the inflammatory response induced by wheat gliadin in the small intestine of DQ8 mice.


Assuntos
Doença Celíaca , Gliadina , Animais , Doença Celíaca/metabolismo , Farinha , Gliadina/metabolismo , Glutens/metabolismo , Antígenos HLA-DQ/imunologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Transgênicos , Transglutaminases/metabolismo , Triticum/metabolismo
16.
J Phys Chem B ; 126(28): 5151-5160, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35796490

RESUMO

Free energy perturbation (FEP) calculations can predict relative binding affinities of an antigen and its point mutants to the same human leukocyte antigen (HLA) with high accuracy (e.g., within 1.0 kcal/mol to experiment); however, a more challenging task is to compare binding affinities of wholly different antigens binding to completely different HLAs using FEP. Researchers have used a variety of different FEP schemes to compute and compare absolute binding affinities, with varied success. Here, we propose and assess a unifying scheme to compute the relative binding affinities of different antigens binding to completely different HLAs using absolute binding affinity FEP calculations. We apply our affinity calculation technique to HLA-antigen-T-cell receptor (TCR) systems relevant to celiac disease (CeD) by investigating binding affinity differences between HLA-DQ2.5 (enhanced CeD risk) and HLA-DQ7.5 (CeD protective) in the binary (HLA-gliadin) and ternary (HLA-gliadin-TCR) binding complexes for three gliadin derived epitopes: glia-α1, glia-α2, and glia-ω1. Based on FEP calculations with our carefully designed thermodynamic cycles, we demonstrate that HLA-DQ2.5 has higher binding affinity than HLA-DQ7.5 for gliadin and enhanced binding affinity with a common TCR, agreeing with known results that the HLA-DQ2.5 serotype exhibits increased risk for CeD. Our findings reveal that our proposed absolute binding affinity FEP method is appropriate for predicting HLA binding for disparate antigens with different genotypes. We also discuss atomic-level details of HLA genotypes interacting with gluten peptides and TCRs in regard to the pathogenesis of CeD.


Assuntos
Doença Celíaca , Glutens , Doença Celíaca/genética , Doença Celíaca/metabolismo , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/metabolismo , Gliadina/química , Glutens/química , Humanos , Peptídeos/química , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética
17.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806180

RESUMO

Celiac disease (CD) is an immune-mediated enteropathy triggered in genetically susceptible individuals by gluten-containing cereals. A central role in the pathogenesis of CD is played by the HLA-restricted gliadin-specific intestinal T cell response generated in a pro-inflammatory environment. The mechanisms that generate this pro-inflammatory environment in CD is now starting to be addressed. In vitro study on CD cells and organoids, shows that constant low-grade inflammation is present also in the absence of gluten. In vivo studies on a population at risk, show before the onset of the disease and before the introduction of gluten in the diet, cellular and metabolic alterations in the absence of a T cell-mediated response. Gluten exacerbates these constitutive alterations in vitro and in vivo. Inflammation, may have a main role in CD, adding this disease tout court to the big family of chronic inflammatory diseases. Nutrients can have pro-inflammatory or anti-inflammatory effects, also mediated by intestinal microbiota. The intestine function as a crossroad for the control of inflammation both locally and at distance. The aim of this review is to discuss the recent literature on the main role of inflammation in the natural history of CD, supported by cellular fragility with increased sensitivity to gluten and other pro-inflammatory agents.


Assuntos
Doença Celíaca , Microbioma Gastrointestinal , Doença Celíaca/metabolismo , Gliadina/metabolismo , Glutens/metabolismo , Humanos , Inflamação/patologia , Mucosa Intestinal/metabolismo
18.
Cell Rep ; 39(11): 110956, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705047

RESUMO

Celiac disease (CD) is a multisystem disease in which different organs may be affected. We investigate whether circulating innate lymphoid cells (ILCs) contribute to the CD peripheral inflammatory status. We find that the CD cytokine profile is characterized by high concentrations of IL-12p40, IL-18, and IFN-γ, paralleled by an expansion of ILC precursors (ILCPs). In the presence of the gliadin peptides p31-43 and pα-9, ILCPs from CD patients increase transglutaminase 2 (TG2) expression, produce IL-18 and IFN-γ, and stimulate CD4+ T lymphocytes. IFN-γ is also produced upon stimulation with IL-12p40 and IL-18 and is inhibited by the addition of vitamin D. Low levels of blood vitamin D correlate with high IFN-γ and ILCP presence and mark the CD population mostly affected by extraintestinal symptoms. Dietary vitamin D supplementation appears to be an interesting therapeutic approach to dampen ILCP-mediated IFN-γ production.


Assuntos
Doença Celíaca , Imunidade Inata , Doença Celíaca/imunologia , Doença Celíaca/metabolismo , Gliadina/metabolismo , Gliadina/farmacologia , Humanos , Subunidade p40 da Interleucina-12/metabolismo , Interleucina-18/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos/metabolismo , Vitamina D/metabolismo , Vitamina D/farmacologia
19.
Mol Biol Rep ; 49(9): 8527-8535, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35723802

RESUMO

BACKGROUND: Regulatory T cells (Tregs) have an important role in the control of the immune responses. This study aimed to compare the frequency of peripheral blood (PB) CD4+ CD25+ FoxP3+ Treg cells and PB and duodenal expression levels of pro- and anti-inflammatory mediators in treated celiac disease (CD) patients and healthy controls. METHODS AND RESULTS: Duodenal biopsy specimens and PB samples were collected from 60 treated CD patients and 60 controls. Flow cytometry analysis was conducted on peripheral blood mononuclear cell (PBMC) specimens and relative PB and duodenal mRNA expression levels of CD25, forkhead box P3 (Foxp3), interleukin (IL)-10 and granzyme B (GrzB) were evaluated using quantitative real-time PCR. The levels of serum IL-10 and IL-6 were tested with sandwich enzyme-linked immunosorbent assay kits. p values < 0.05 were considered significant. Flow cytometry analysis showed a significant decrease in the number of Tregs in CD patients' PBMC specimens (p = 0.012). CD25 and Foxp3 PB mRNA expressions were also lower in CD patients without reaching the significance level (p > 0.05). IL-10 PB mRNA and protein expression did not differ between the groups (p > 0.05), and GrzB PB expression was significantly reduced in CD patients (p = 0.001). In duodenal specimens of CD patients, while significantly increased CD25, Foxp3 mRNA expression (p = 0.01 and 0.001, respectively) and decreased IL-10 mRNA expression (p = 0.02) were observed, GrzB mRNA expression did not differ between groups (p > 0.05). Moreover, a high serum level of IL-6 was observed in CD patients (p = 0.001). CONCLUSIONS: Despite following the gluten free diet, there may still be residual inflammation in the intestine of CD patients. Accordingly, finding a therapeutic approach based on strengthening the function of Treg cells in CD might be helpful.


Assuntos
Doença Celíaca , Linfócitos T Reguladores , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Fatores de Transcrição Forkhead/genética , Humanos , Interleucina-10/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T Reguladores/metabolismo
20.
Sci Rep ; 12(1): 8660, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606450

RESUMO

Oat (Avena sativa L.) is considered to be a healthy food. In contrast to other grain crops, oat is high in protein, lipids, dietary fiber, antioxidants, and uniquely in avenanthramides. The question of whether it can also be consumed by people suffering from celiac disease is still unresolved. The main aim of this study was to extract and sequence genes for potentially harmful avenins, globulins, and α-amylase/trypsin inhibitors in six oat varieties and to establish their variability using PacBio sequencing technology of enriched libraries. The results were compared with sequences of the genes already present in databases. In total, 21 avenin, 75 globulin, and 25 α-amylase/trypsin inhibitor genes were identified and mapped in the hexaploid oat chromosomes. In all of the three gene families, only marginal sequence differences were found between the oat varieties within the individual genes. Avenin epitopes were found in all four types of avenin genes occurring in all oat varieties tested within this study. However, the number of avenin genes was nearly four times lower than of globulin genes and, on the protein level, formed only 10% of storage proteins. Therefore, the question of whether oat is safe to celiac disease people is a question of boundary values.


Assuntos
Doença Celíaca , Globulinas , Alérgenos/metabolismo , Avena/genética , Avena/metabolismo , Doença Celíaca/genética , Doença Celíaca/metabolismo , Globulinas/metabolismo , Humanos , Prolaminas/genética , Sementes/genética , Sementes/metabolismo , Transcriptoma , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...